Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38232803

RESUMO

Hypothyroidism is a chronic condition combated by a daily oral supplementation of levothyroxine. In addition to the need for frequent dosing, oral administration may result in variable absorption of the drug leading to a failure in achieving normal thyroid function. Therefore, the development of a long-acting injectable system capable of delivering the drug is necessary. This work was aimed at developing sustained release microparticles loaded with levothyroxine. The microparticles were produced through the emulsification-solvent evaporation method using 2 grades of biocompatible and biodegradable polyesters: poly(ᴅ,ʟ-lactide-co-glycolide) (PLGA) and poly(ᴅ,ʟ-lactide) (PLA). Both polymers produced microparticles with very similar sizes (1.9 µm) and zeta potential values (around -22.0 mV). However, PLA microparticles had a significantly higher drug loading (6.1% vs. 4.4%, respectively) and encapsulation efficiency (36.8%, vs. 26.1%, respectively) when compared to PLGA counterparts. While both types of microparticles displayed a biphasic release pattern in vitro, a slower rate of release was observed with PLA microparticles. Moreover, a similar biphasic release pattern was found in vivo, with an initial phase of rapid release followed by a slower phase in the subsequent 10 days. These results indicate the possibility of developing levothyroxine loaded polyester microparticles as a potential long-acting thyroid hormone replacement therapy.

2.
Int J Pharm ; 636: 122781, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36849039

RESUMO

Long-term exposure to solar radiation can lead to skin damage such as photoageing, and photocarcinogenesis. This can be prevented by topically applying α-tocopherol phosphate (α-TP). The major challenge is that a significant amount of α-TP needs to reach viable skin layers for effective photoprotection. This study aims to develop candidate formulations of α-TP (gel-like, solution, lotion, and gel), and investigate formulation characteristics' effect on membrane diffusion and human skin permeation. All the formulations developed in the study had an appealing appearance and no signs of separation. All formulations had low viscosity and high spreadability except the gel. The flux of α-TP through the polyethersulfone membrane was the highest for lotion (6.63 ±â€¯0.86 mg/cm2/h), followed by control gel-like (6.14 ±â€¯1.76 mg/cm2/h), solution (4.65 ±â€¯0.86 mg/cm2/h), and gel (1.02 ±â€¯0.22 mg/cm2/h). The flux of α-TP through the human skin membrane was numerically higher for lotion compared to the gel-like (328.6 vs.175.2 µg/cm2/h). The lotion delivered 3-fold and 5-fold higher α-TP in viable skin layers at 3 h and 24 h, respectively, compared to that of the gel-like. The low skin membrane penetration rate and deposition of α-TP in viable skin layers were observed for the solution and gel. Our study demonstrated that dermal penetration of α-TP was influenced by characteristics of formulation such as formulation type, pH, and viscosity. The α-TP in the lotion scavenged higher DPPH free radicals compared to that of gel-like (almost 73% vs. 46%). The IC50 of α-TP in lotion was significantly lower than that of gel-like (397.2 vs. 626.0 µg/mL). The preservative challenge test specifications were fulfilled by Geogard 221 and suggested that the combination of benzyl alcohol and Dehydroacetic Acid effectively preserved 2% α-TP lotion. This result confirms the suitability of the α-TP cosmeceutical lotion formulation employed in the present work for effective photoprotection.


Assuntos
Cosmecêuticos , Vitamina E , Humanos , Vitamina E/metabolismo , Absorção Cutânea , Fosfatos/metabolismo , Pele/metabolismo , Emolientes , Administração Cutânea
3.
Int J Pharm ; 606: 120926, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34303818

RESUMO

We have previously optimized the internal phase separation process to give rise to aqueous core microcapsules with polymeric shells composed of poly(lactide-co-glycolide) (PLGA) or poly(lactide) (PLA). In this study, the ability of these microcapsules to act as controlled release platforms of the model hydrophilic drug phenobarbital sodium was tested. Furthermore, the effect of the initial amounts of drug and water added to the system during microcapsule synthesis was investigated. Finally, the effect of varying polymer properties such as end functionalities, molecular weights, and lactide to glycolide ratios, on the characteristics of the produced microcapsules was studied. This was done by utilizing seven different grades of the polyester polymers. It was demonstrated that, within certain limits, drug loading is nearly proportional to the initial amounts of drug and water. Furthermore, drug encapsulation studies demonstrated that ester termination and increases in polymeric molecular weight result in lower drug loading and encapsulation efficiency. Moreover, drug release studies demonstrated that ester termination, increases in molecular weight, and increases in the lactide to glycolide ratio all result in slower drug release; this grants the ability to tailor the drug release duration from a few days to several weeks. In conclusion, such minor variations in polymer characteristics and formulation composition can result in dramatic changes in the properties of the produced microcapsules. These changes can be fine-tuned to obtain desirable long-acting microcapsules capable of encapsulating a variety of hydrophilic drugs which can be used in a wide range of applications.


Assuntos
Ácido Láctico , Água , Cápsulas , Composição de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...